- DNA fingerprinting
- DNA sequencing
- similarities and differences between each
- DNA ch 20 slideshow outlined learning objectives
- Polymerase Chain Reaction PCR
- amplification of a segment of DNA resulting in multiple copies
- animation/videos outlining PCR
- phylogentic tree and genetic variety
- DNA passing from mom only to offspring in cytoplasm of zygote outside the nucleus
- Lab exercise 20.B table 1
- review chapter 20 pg 700 and 705
The material we covered today is fairly abstract and so animations that we watched help for us to see what is happening at the molecular level in PCR. It is interesting to find out how our DNA is actually being read and how the codons of DNA are the sequences that differ from person to person. Applications of DNA use show how important and beneficial the genetic code is in the medical world. I feel like this unit is most in depth and therefore is harder to grasp at the concepts.
EXTRA
DNA sequencing and the HUMAN GENOME PROJECT
These tools include genetic maps, physical maps and DNA sequence - which is a detailed description of the order of the chemical building blocks, or bases, in a given stretch of DNA. Indeed, the monumental achievement of the HGP was its successful sequencing of the entire length of human DNA, also referred to as the human genome.
Scientists need to know the sequence of bases because it tells them the kind of genetic information that is carried in a particular segment of DNA. For example, they can use sequence information to determine which stretches of DNA contain genes, as well as to analyze those genes for changes in sequence, called mutations, that may cause disease.
Although providing a single reference sequence of the human genome is an extraordinary achievement, further advances in sequencing technology are necessary so large amounts of DNA can be manipulated and compared with other genomes quickly and cheaply. Comparing differences among long stretches of DNA - one million bases or more - taken from many individuals should yield an enormous amount of information about the role of inheritance in disease susceptibility, response to environmental influences and even evolution.
The Human Genome Project's (HGP) successful sequencing of the human genome has provided scientists with a virtual blueprint of the human being. However, this accomplishment should be viewed not as an end in itself, but rather as a starting point for even more exciting research. Armed with the human genome sequence, researchers are now trying to unravel some of biology's most complicated processes: how a baby develops from a single cell, how genes coordinate the functions of tissues and organs, how disease predisposition occurs and how the human brain works. http://www.genome.gov/10001177
These tools include genetic maps, physical maps and DNA sequence - which is a detailed description of the order of the chemical building blocks, or bases, in a given stretch of DNA. Indeed, the monumental achievement of the HGP was its successful sequencing of the entire length of human DNA, also referred to as the human genome.
Scientists need to know the sequence of bases because it tells them the kind of genetic information that is carried in a particular segment of DNA. For example, they can use sequence information to determine which stretches of DNA contain genes, as well as to analyze those genes for changes in sequence, called mutations, that may cause disease.
Although providing a single reference sequence of the human genome is an extraordinary achievement, further advances in sequencing technology are necessary so large amounts of DNA can be manipulated and compared with other genomes quickly and cheaply. Comparing differences among long stretches of DNA - one million bases or more - taken from many individuals should yield an enormous amount of information about the role of inheritance in disease susceptibility, response to environmental influences and even evolution.
The Human Genome Project's (HGP) successful sequencing of the human genome has provided scientists with a virtual blueprint of the human being. However, this accomplishment should be viewed not as an end in itself, but rather as a starting point for even more exciting research. Armed with the human genome sequence, researchers are now trying to unravel some of biology's most complicated processes: how a baby develops from a single cell, how genes coordinate the functions of tissues and organs, how disease predisposition occurs and how the human brain works. http://www.genome.gov/10001177